ON L-M DUALITY IN REAL BANACH SPACES

CONSTANTIN P. NICULESCU and DAN TUDOR VUZA

Most results in M-structure theory are related to the following two order relations that make sense for any real Banach space E:

$$x \leq_L y \text{ if and only if } ||y|| = ||x|| + ||y - x||$$

 $x \leqslant_M y$ if and only if every closed ball containing 0 and y contains also x.

See [1] or [2] for details.

It is the purpose of this paper to prove a new characterization of \leq_M by starting with the obvious remark that

 $x \leqslant_M y$ if and only if $||x+z|| \leqslant \max \{||z||, ||y+z||\}$ for every $z \in E$.

Particularly that will allow us to explain why numerical range techniques and M-theory techniques have the same bulk of applications in the context of C^* -algebras.

THEOREM 1. Let E be a real Banach space and let x and y be two elements of E. Then the following assertions are equivalent:

- i) $x \leqslant_M y$;
- $E''; \quad \text{ii) } ||x+z|| \leq \max \{||z||, ||y+z||\} \text{ for every } z \in E'' \text{ i.e., } x \leq_M y \text{ in}$
 - iii) For every (a certain) w' dense subspace H of E'.

$$f(x) \leq \sup \{g(y) \mid g \in E', g \leq_L f\}, \forall f \in \mathcal{H}.$$

Proof. i) \Rightarrow ii). By the principle of local reflexivity (see [4]) for each $\epsilon > 0$ and each $z \in E$ " there exists a z_{ϵ} in E such that

$$\begin{aligned} \|x+z\| &\leq (1+\varepsilon) \cdot \|x+z_{\varepsilon}\| \leq (1+\varepsilon) \cdot \max \left\{ \|z_{\varepsilon}\|, \|y+z_{\varepsilon}\| \right\} \leq \\ &\leq \frac{1+\varepsilon}{1-3\varepsilon} \cdot \max \left\{ \|z\|, \|y+z\| \right\} \end{aligned}$$

so it remains to take the infimum in the right hand over $\epsilon > 0$.

ii) \Rightarrow iii). Let $f \in \mathcal{H}$, $\varepsilon > 0$ and $n \in \mathbb{N}$ be such that $n \geqslant ||y||$. Then we can consider the sublinear functional $p_n : \mathcal{H} \to \mathbb{R}$ given by

$$p_n(\varphi) = \inf \{ n | |h| - h(y) + n | |\varphi - h| | |h \in \mathcal{H} \}.$$

Since $p_n(\varphi) \le n \|\varphi\|$ for every $\varphi \in \mathcal{H}$, the functional p_n is continuous and thus there exists a $z \in \mathcal{H}'$ such that

$$f(z) = p_n(f)$$

REV. ROUMAINE MATH. PURES APPL., 38(1993), 3, 275-279

and

$$\varphi(z) \leqslant p_n(\varphi)$$
 for every $\varphi \in \mathcal{H}$.

The second condition yields $||z|| \le n$ and $||z + y|| \le n$ so by ii),

$$f(x) + f(z) = f(x + z) \le ||f|| \cdot ||x + z|| \le$$

$$\le ||f|| \cdot \max\{|||z||, ||y + z||\} \le n ||f||.$$

Then

$$\begin{split} f(x) &\leqslant n \|f\| - p_n(f) = \\ &= n \|f\| - \inf \left\{ n \|h\| - h(y) + n \|\varphi - h\| |h \in \mathcal{H} \right\} = \\ &= \sup \left\{ n \|f\| - n \|h\| + h(y) - n \|\varphi - h\| |h \in \mathcal{H} \right\}. \end{split}$$

We shall prove that the last term is $< a + \varepsilon$, where $a = \sup \{g(y) | g \in E', g \leqslant_L f\}$.

In fact, if the contrary is true, it would exist a sequence $(h_n)_n \subset \mathcal{H}$ such that

(*)
$$n \|f\| + h_n(y) \ge n(\|h_n\| + \|f - h_n\|) + a + \varepsilon$$

for all $n \ge ||y||$. Consequently

$$h_n(y) \ge a + \varepsilon \text{ for } n \ge ||y||,$$

which yields

$$\overline{\lim}_{n\to\infty} \|h_n\| \leqslant \lim_{n\to\infty} \frac{n\|f\|-a}{n-\|y\|} = \|f\|.$$

Particularly the sequence $(h_n)_n$ is bounded and (by passing to a subsequence if necessary) we can assume that $h_n \stackrel{w'}{\to} h$. By (*),

$$||f|| + \frac{1}{n} h_n(y) \ge ||h_n|| + ||f - h_n|| + \frac{a + \varepsilon}{n}$$

which implies that

$$||f|| \ge ||h|| + ||f - h|| \ge ||f||$$

i.e., $h \leqslant_L f$. Then $h(y) \leqslant a$, in contradiction with (**).

t]

F

st

ter

Ef (M

- 1

(so

6 ~

iii)
$$\Rightarrow$$
 i). Let $z \in E$ and $h \in \mathcal{H}$ with $||h|| \leq 1$. Then

$$\begin{split} h(z) \, + \, h(x) \, \leqslant \, h(z) \, + \, \sup \, \{g(y) \, | \, g \in E', \, g \, \leqslant_L h \} \, = \\ &= \sup \, \{h(z) \, + \, g(y) \, | \, g \in E', \, g \, \leqslant_L h \} \, = \\ &= \sup \, \{(h \, - \, g) \, (z) \, + \, g(z \, + \, y) \, | g \in E', \, g \, \leqslant_L h \} \, \leqslant \\ &\leqslant \sup \, \{\|h \, - \, g\| \cdot \|z\| \, + \, \|g\| \cdot \|z \, + \, y \, \| \, g \, \leqslant_L h \} \, \leqslant \\ &\leqslant \max \, \{\|z\|, \|z \, + \, y \, \| \} \end{split}$$

and thus $||x + z|| \le \max \{||z||, ||y + z||\}$ for every $z \in E$ i.e., $x \le M$ y. COROLLARY 1. Let E be a real Banach space. Then:

i) $x \leqslant_M y$ in E if and only if $f(x) \leqslant \sup \{g(y) | g \in E', g \leqslant_L f\}$ for every $f \in E'$.

ii) $f \leqslant_M g$ in E' if and only if $f(x) \leqslant \sup \{g(y) | y \in E'', y \leqslant_L x\}$ for every $x \in E$.

From Corollary 1 ii) we can infer immediately that all \leq_M -intervals [0,f] in E' are w'-compact and that the adjoint of every operator in the Cunningham algebra of E belongs to the centralizer of E'.

Let \leqslant be one of the order relations \leqslant_L and \leqslant_M . We shall say that \leqslant is *trivial* provided that

$$x \leqslant y$$
 if and only if $x = \alpha \cdot y$ for some $\alpha \in [0, 1]$.

For example, \leq_L is trivial on any strictly convex Banach space.

COROLLARY 2. If \leqslant_L is trivial on E' then \leqslant_M is trivial on E.

The duality outlined in Corollary 1 is only one way and an interesting open question is whether the assertion ii) in Corollary 1 could be straighten up to

$$f \leqslant_M g$$
 in E' if and only if $f(x) \leqslant \sup \{g(y) | y \in E, y \leqslant_L x\}$ for every $x \in E$.

A positive answer to that question would yield the following counterpart of Corollary $2: If \leqslant_L is \ trivial \ on \ E \ then \leqslant_M is \ trivial \ on \ E'.$

How thin can be the subsets $\mathcal H$ as in Theorem 1 above? Alfsen and Effros have noticed in [1] that

(M) $x \leqslant_M y$ in E if and only if either $0 \leqslant f(x) \leqslant f(y)$ or $f(y) \leqslant f(x) \leqslant 0$ for every extreme point f of the closed unit ballk of E' (i.e., $f(x) = \alpha \cdot f(y)$ for a suitable $\alpha \in [0, 1]$).

Their argument depends upon Choquet's theory. We can offer a (somewhat) simpler argument via Corollary 1 above.

Suppose that $x \leqslant_M y$ in E. If f is an extreme point of K, then $g \leqslant_L f$ in E' yields $g = \alpha \cdot f$ for a suitable $\alpha \in [0, 1]$. See [1], p. 106. Then by Corollary 1 i),

$$f(x) \leq \sup \{\alpha \cdot f(y) \mid \alpha \in [0, 1]\}.$$

Since -f is also an extreme point, we can restrict ourselves to the case where f(x) > 0. Then the inequality above yields $0 < f(x) \le f(y)$.

Conversely, let $\sum_{k=1}^{n} \lambda_k f_k$ be a convex combination of extreme points of K. By hypotheses, for each k there exists an $\alpha_k \in [0, 1]$ such that $f_k(x) = \alpha_k \cdot f_k(y)$. Suppose that $\overline{B}_r(z)$ is a closed ball in E containing 0 and y. Then

$$\left|\sum_{k=1}^{n} \lambda_{k} f_{k}(x-z)\right| \leqslant \sum_{k=1}^{n} \lambda_{k} \alpha_{k} |f_{k}(y-z)| +$$

$$+ \sum_{k=1}^{n} \lambda_{k} (1-\alpha_{k}) |f_{k}(z)| \leqslant r$$

so by Krein-Milman Theorem we can conclude that $x \in \bar{B}_r(z)$ too.

THEOREM 2. Suppose that E is an M-ideal of E''. Then $x \leqslant_M y$ in E'' if and only if and only if for each extreme point f of the closed unit ball K of E' either $0 \leqslant f(x) \leqslant f(y)$ or $f(y) \leqslant f(x) \leqslant 0$.

Proof. We can proceed as in the case of the assertion (M), by noticing the fact that every extreme point of K extends uniquely to an extreme point of the closed unit ball K^{00} of $E^{\prime\prime\prime}$. In fact, since E is an M-ideal of $E^{\prime\prime}$, then every functional $f \in E^{\prime}$ has a unique extension $g \in E^{\prime\prime\prime}$ such that $\|g\| = \|f\|$. See [2], p. 35.

Theorem 2 reveals an interesting connection between \leq_M and numerical range in the case of C^* -algebras. To avoid some technicalities, we shall restrict ourselves to a special case.

Let H be a complex Hilbert space and let $\mathscr{A}(H)$ be the self-adjoint part of L(H,H). It is known that $\mathscr{A}(H)$ is the second dual of the Banach space E of all self-adjoint compact operators on H and the dual of the Banach space of all self-adjoint nuclear operators on H; the natural pairing of E' and E'' is given by $(A,B) \to \operatorname{Trace} AB$. See [3] for details. The extreme points of the closed unit ball of E' are of the form $\langle , x \rangle x$, where x runs over unit sphere of H. E is an M-ideal of E'' by [1], p. 167. Then by Theorem 2 above we can conclude that

 $A \leq_M B$ in $\mathscr{A}(H)$ if and only if for each $x \in H$ there exists an $\alpha \in [0,1]$ such that $\langle Ax, x \rangle = \alpha \cdot \langle Bx, x \rangle$.

Some comments are in order. Let $A, B \in \mathcal{A}(H)$.

If $B \ge 0$, then $A \leqslant_M B$ if and only if $0 \leqslant A \leqslant B$.

If AB=BA, then $A\leqslant_M B$ if and only if $A^-\leqslant B^-$ and $A^+\leqslant B^+$. particularly, $-A^-,A^+\leqslant_M A$.

If $A \leqslant_M B$, then $C*AC \leqslant_M C*BC$ for every $C \in L(H, H)$.

REFERENCES

- E. M. Alfsen and E. G. Effros, Structure in real Banach spaces. Annals of Math. 96 (1972), 98-173.
- 2. E. Behrends, M-structure and the Banach-Stone Theorem. Lecture Notes in Math. Vol. 736. Springer, Berlin, 1979.
- 3. G. J. Murphy, C*-algebras and operator theory. Academic Press, New York, 1990.
- Ch. Stegall, A proof of the principle of local reflexivity. Proc. Amer. Math. Soc. 78 (1980), 154-156.

Received May 5, 1992

University of Craiova
Department of Mathematics
1100 Craiova, Romania
and
Institute of Mathematics
of the Romanian Academy
P.O.Box 1—764, 70700 Bucharest,
Romania

in all

 \mathbf{n}

tireeal ch

newe

int

of of ral ils. $\langle x, \rangle x$,

an

67.

 B^+ .